Natural hazardsMitigating Hazards with Vulnerability in Mind

By Andrew Logan

Published 3 September 2021

From tropical storms to landslides, the form and frequency of natural hazards vary widely. To mitigate natural hazards equitably, an MIT Ph.D. candidate is incorporating social vulnerability into resilience engineering and hazard recovery.

From tropical storms to landslides, the form and frequency of natural hazards vary widely. But the feelings of vulnerability they can provoke are universal.

Growing up in hazard-prone cities, Ipek Bensu Manav, a civil and environmental engineering Ph.D. candidate with the MIT Concrete Sustainability Hub (CSHub), noticed that this vulnerability was always at the periphery. Today, she’s studying vulnerability, in both its engineering and social dimensions, with the aim of promoting more hazard-resilient communities.

Her research at CSHub has taken her across the country to attend impactful conferences and allowed her to engage with prominent experts and decision-makers in the realm of resilience. But more fundamentally, it has also taken her beyond the conventional bounds of engineering, reshaping her understanding of the practice.

From her time in Miami, Florida, and Istanbul, Turkey, Manav is no stranger to natural hazards. Istanbul, which suffered a devastating earthquake in 1999, is predicted to experience an equally violent tremor in the near future, while Miami ranks among the top cities in the U.S. in terms of natural disaster risk due to its vulnerability to hurricanes.

“Growing up in Miami, I’d always hear about hurricane season on the news,” recounts Manav, “While in Istanbul there was a constant fear about the next big earthquake. Losing people and [witnessing] those kinds of events instilled in me a desire to tame nature.”

It was this desire to “push the bounds of what is possible” — and to protect lives in the process — that motivated Manav to study civil engineering at Boğaziçi University. Her studies there affirmed her belief in the formidable power of engineering to “outsmart nature.”

This, in part, led her to continue her studies at MIT CSHub — a team of interdisciplinary researchers who study how to achieve resilient and sustainable infrastructure. Her role at CSHub has given her the opportunity to study resilience in depth. It has also challenged her understanding of natural disasters — and whether they are “natural” at all.

“Over the past few decades, some policy choices have increased the risk of experiencing disasters,” explains Manav. “An increasingly popular sentiment among resilience researchers is that natural disasters are not ‘natural,’ but are actually man-made. At CSHub we believe there is an opportunity to do better with the growing knowledge and engineering and policy research.”

As a part of the CSHub portfolio, Manav’s research looks not just at resilient engineering, but the engineering of resilient communities.

Hits: 1

Climate change, global warming, natural disasters, geoengineering, mitigation Infrastructure protection, rainstorms, underground, climate change