MICROCHIPSReasserting U.S. Leadership in Microelectronics

By Adam Zewe

Published 19 January 2022

The global semiconductor shortage has grabbed headlines and caused a cascade of production bottlenecks that have driven up prices on all sorts of consumer goods, from refrigerators to SUVs. The chip shortage has thrown into sharp relief the critical role semiconductors play in many aspects of everyday life. But years before the pandemic-induced shortage took hold, the United States was already facing a growing chip crisis. MIT researchers lay out a strategy for how universities can help the U.S. regain its place as a semiconductor superpower.

The global semiconductor shortage has grabbed headlines and caused a cascade of production bottlenecks that have driven up prices on all sorts of consumer goods, from refrigerators to SUVs. The chip shortage has thrown into sharp relief the critical role semiconductors play in many aspects of everyday life.

But years before the pandemic-induced shortage took hold, the United States was already facing a growing chip crisis. Its longstanding dominance in microelectronics innovation and manufacturing has been eroding over the past several decades in the face of stepped-up international competition. Now, reasserting U.S. leadership in microelectronics has become a priority for both industry and government, not just for economic reasons but also as a matter of national security.

In a new white paper, a group of MIT researchers argue that the country’s strategy for reasserting its place as a semiconductor superpower must heavily involve universities, which are uniquely positioned to pioneer new technology and train a highly skilled workforce. Their report, “Reasserting U.S. Leadership in Microelectronics,” lays out a series of recommendations for how universities can play a leading role in the national effort to reattain global preeminence in semiconductor research and manufacturing.

“In this national quest to regain leadership in microelectronics manufacturing, it was clear to us that universities should play a major role. We wanted to think from scratch about how universities can best contribute to this important effort,” says Jesús del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) and the leading author of the white paper. “Our goal is that, when these national programs are constructed, they are built in a well-balanced way, taking advantage of the tremendous resources and talent that American universities can bring to bear.”

Other co-authors include Dimitri Antoniadis, the Ray and Maria Stata Professor of Electrical Engineering; Robert Atkins, head of the Advanced Technology Division at Lincoln Laboratory; Marc Baldo, the Dugald C. Jackson Professor of Electrical Engineering and director of the Research Laboratory of Electronics; Vladimir Bulović, the Fariborz Maseeh Chair in Emerging Technology and director of MIT.nano; Mark Gouker, assistant head of the Advanced Technology Division at Lincoln Laboratory; Craig Keast, associate head of the Advanced Technology Division and director of operations for the Microelectronics Laboratory at Lincoln Laboratory; Hae-Seung Lee, the Advanced Television and Signal Processing Professor of Electrical Engineering and director of the Microsystems Technology Laboratories;

Hits: 1

Energy security, renewable energy. electric grid Polarization, party politics, extremism | Homeland Security Newswire